Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Genetic variation provides a foundation for understanding evolution. With the rise of artificial intelligence, machine learning has emerged as a powerful tool for identifying genomic footprints of evolutionary processes through simulation-based predictive modeling. However, existing approaches require prior knowledge of the factors shaping genetic variation, whereas uncovering anomalous genomic regions regardless of their causes remains an equally important and complementary endeavor. Methods: To address this problem, we introduce ANDES (ANomaly DEtection using Summary statistics), a suite of algorithms that apply statistical techniques to extract features for unsupervised anomaly detection. A key innovation of ANDES is its ability to account for autocovariation due to linkage disequilibrium by fitting curves to contiguous windows and computing their first and second derivatives, thereby capturing the “velocity” and “acceleration” of genetic variation. These features are then used to train models that flag biologically significant or artifactual regions. Results: Application to human genomic data demonstrates that ANDES successfully detects anomalous regions that colocalize with genes under positive or balancing selection. Moreover, these analyses reveal a non-uniform distribution of anomalies, which are enriched in specific autosomes, intergenic regions, introns, and regions with low GC content, repetitive sequences, and poor mappability. Conclusions: ANDES thus offers a novel, model-agnostic framework for uncovering anomalous genomic regions in both model and non-model organisms.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under nonconvex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data although preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.more » « less
-
Kim, Yuseob (Ed.)Abstract Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data.more » « less
An official website of the United States government
